Increased N6-methyladenosine in Human Sperm RNA as a Risk Factor for Asthenozoospermia
نویسندگان
چکیده
Male infertility is a worldwide medical problem. Asthenozoospermia is a common cause of infertility. Epigenetic modifications of DNA and histones have been shown to influence human infertility, but no research has explored whether N(6)-methyladenosine (m(6)A) level in RNA is associated with asthenozoospermia. Here, we collected a total of 52 semen samples, including 20 asthenozoospermia patients and 32 healthy controls. An LC-ESI-MS/MS method was used to detect m(6)A contents in sperm RNA, and real-time PCR was performed to determine the mRNA expression of demethylase (FTO, ALKBH5), methyltransferase (METTL3, METTL14, WTAP) and an m(6)A-selective-binding protein (YTHDF2). We found that m(6)A content (p = 0.033) and the mRNA expression of METTL3 (p = 0.016) and METTL14 (p = 0.025) in asthenozoospermia patients were significantly higher than those of controls. Increased m(6)A content was a risk factor for asthenozoospermia (odds ratio (OR) 3.229, 95% confidence interval (CI) 1.178 - 8.853, p = 0.023). Moreover, m(6)A content was correlated with the expression of METTL3 (r = 0.303, p = 0.032) and with sperm motility (progressive motility: r = -0.288, p = 0.038; non-progressive motility: r = -0.293, p = 0.037; immotility: r = 0.387, p = 0.005). Our data suggest that increased m(6)A content is a risk factor for asthenozoospermia and affects sperm motility. Methyltransferases, particularly METTL3, play key roles in increasing m(6)A contents in sperm RNA.
منابع مشابه
O-2: Food Group Intakes and Risk of Idiopathic Asthenozoospermia: A Case-Control Study
Background: Asthenozoospermia, a disorder of sperm motility, is a common cause of human male infertility and is found to play a role in approximately 19% of infertile patients. Epidemiological studies indicated a link between environmental pollutants, lifestyle changes, and dietary habits and infertility. In view of the fact that nutrition is coming to the fore as a major environmental factor, ...
متن کاملMTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor.
N6-Methyladenosine is a ubiquitous modification identified in the mRNA of numerous eukaryotes, where it is present within both coding and noncoding regions. However, this base modification does not alter the coding capacity, and its biological significance remains unclear. We show that Arabidopsis thaliana mRNA contains N6-methyladenosine at levels similar to those previously reported for anima...
متن کاملFTO-Mediated Formation of N6-Hydroxymethyladenosine and N6-Formyladenosine in Mammalian RNA
N(6)-methyladenosine is a prevalent internal modification in messenger RNA and non-coding RNA affecting various cellular pathways. Here we report the discovery of two additional modifications, N(6)-hydroxymethyladenosine (hm(6)A) and N(6)-formyladenosine (f(6)A), in mammalian messenger RNA. We show that Fe(II)- and α-ketoglutarate-dependent fat mass and obesity-associated (FTO) protein oxidize ...
متن کاملA link between FTO, ghrelin, and impaired brain food-cue responsivity.
Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight human...
متن کاملYTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic messenger RNA (mRNA) and plays critical roles in RNA biology. The function of this modification is mediated by m6A-selective 'reader' proteins of the YTH family, which incorporate m6A-modified mRNAs into pathways of RNA metabolism. Here, we show that the m6A-binding protein YTHDC1 mediates export of methylated mRN...
متن کامل